
Keeping Secrets: Lessons
Learned From Securing
GitHub

Dennis Pacewicz (@lyninx)
Senior Product Security Engineer
GitHub

Wei Lin Ngo (@Creastery)
Staff Security Engineer
Praetorian

from:
 "Toronto, Canada "
company:
 "GitHub"
 "(formerly) Shopify"
team:
 "Product Security Engineering"

whoami
> Dennis Pacewicz (@lyninx)

from:
 "Singapore "
company:
 "Praetorian"
 "(formerly) STAR Labs"
team:
 "Product/Application Security"

whoami
> Wei Lin Ngo (@Creastery)

Agenda

1. (Ethically) Hacking GitHub
Walkthrough of a high-impact vulnerability leading to secrets exposure

2. Protecting Ourselves
Processes and tools to improve security posture and prevent regressions

3. Keeping Secrets
How to handle and secure sensitive values in production Ruby apps

https://github.blog/news-insights/company-news/rotating-credentials-for-github-com-and-new-ghes-patches/

- Huge monolith
- Built on Rails

- Model-View-Controller (MVC) Architecture
- Views utilize the ViewComponent framework

- Build component-driven UI
- Render Ruby objects into markup

(Ethically) Hacking GitHub

GitHub App Structure

(Ethically) Hacking GitHub

Vulnerability Discovery

(Ethically) Hacking GitHub

(Ethically) Hacking GitHub

What is send()?

(Ethically) Hacking GitHub

Exploiting send(😈, 😈)

(Ethically) Hacking GitHub

Exploiting send(😈, … , 😈)

Step 1: Identify potential vulnerabilities

Step 2: Determine exploitability

- Any safeguards present?
- Are safeguards bypassable?
- Any exploitation constraints?

Step 3: Assess security impact (later on)

(Ethically) Hacking GitHub

Thinking Like A Hacker

“Zero-argument” arbitrary method dispatch

Exploitation Constraint: “Zero-argument” arbitrary method dispatch

What can we do?

- Call any methods defined in the class or those inherited from superclasses
- Call “zero-argument” methods with arity of 0 or -1:

(Ethically) Hacking GitHub

Thinking Like A Hacker

Disclose File Names: __dir__(), caller()
Disclose Class Name: class()
Disclose Method Names: __callee__(), __method__(), methods(), etc.

(Ethically) Hacking GitHub

Finding Candidate Methods

(by the way, these are built-in methods for most Ruby objects)

Strategy:
- Drop into Rails console and gather callable methods via the send()
- Found ~3.6K possibly callable methods
- Tried invoking all methods and collected the response for analysis
- Identified two methods that disclosed 1K+ environment variables

(Ethically) Hacking GitHub

Exploiting repository.send(😈)

(Ethically) Hacking GitHub

Root Cause Analysis

(Ethically) Hacking GitHub

Root Cause Analysis

Copy of ENV
returned here

- _gh_render cookie
- Defaults to using Marshal for serializing session data
- Uses ENTERPRISE_SESSION_SECRET in ENV for encryption/signing

- Encrypt the marshalled payload
- Attacker gets remote code execution in GitHub Enterprise Servers

(Ethically) Hacking GitHub

Escalating Impact Further

Agenda

1. (Ethically) Hacking GitHub
Walking through a high-impact vulnerability leading to secrets exposure

2. Protecting Ourselves
Processes and tools to improve Ruby code security and prevent regressions

3. Keeping Secrets
Handling and securing sensitive values in production Ruby apps

Intake

Triage

Remediation

Variant Analysis

Disclosure

Protecting Ourselves

Vulnerability Lifecycle

Intake

Triage

Remediation

Variant Analysis

Disclosure

Protecting Ourselves

Vulnerability Lifecycle

- Bug Bounty program
- Code scanning alerts
- Red team / Engineering teams
- Customer reports
- and more!

Intake

Triage

Remediation

Variant Analysis

Disclosure

Protecting Ourselves

Vulnerability Lifecycle

Intake

Triage

Remediation

Variant Analysis

Disclosure

Protecting Ourselves

Vulnerability Lifecycle

1. Containment / Eradication
2. Mitigation / Remediation

Protecting Ourselves

Protecting Ourselves

No more repository.send()

Protecting Ourselves

irb(main):006> Example.new.public_send(:secret)
(irb):6:in `public_send': private method `secret' called for an
instance of Example (NoMethodError)

Can we use Object.send() safely?

Protecting Ourselves

irb(main):006> Example.new.public_send(:secret)
(irb):6:in `public_send': private method `secret' called for an
instance of Example (NoMethodError)

irb(main):007> Example.new.public_send(:send, :secret)
=> "password"

Can we use Object.send() safely?

Protecting Ourselves

Can we use Object.send() safely?

(please make sure to handle potentially unsafe additional arguments!)

Protecting Ourselves

Remediation

Protecting Ourselves

Remediation

Environment
Variables

ENV❌

Protecting Ourselves

Remediation

- Already moved away from using Marshal for cookie serialization
- _gh_render was no longer used (part of a deprecated service)

Intake

Triage

Remediation

Variant Analysis

Disclosure

Protecting Ourselves

Vulnerability Lifecycle

- [x] Patch the vulnerable code
- [] Rotate all of the secrets

Intake

Triage

Remediation

Variant Analysis

Disclosure

Protecting Ourselves

Vulnerability Lifecycle

Intake

Triage

Remediation

Variant Analysis

Disclosure

Protecting Ourselves

Vulnerability Lifecycle

GitHub Engineers 0.5s after a
new vulnerability is reported

💻
🚨

- Brakeman (Rails)
- Run at any stage in development

- RuboCop
- Easy to write and use + lots of community support
- PublicSend Cop (from GitLab Security)

- Semgrep / Opengrep
- More accurate AST parsing to identify vulnerable code paths

- CodeQL
- Easy to start using with our default query set
- Can be used to write very accurate queries

- and more!

Protecting Ourselves

Code Scanning Tools

1. Use powerful language features with great care
2. Utilize and customize your code scanning tools
3. Always validate user controlled inputs in your code

Protecting Ourselves

Takeaways

Agenda

1. (Ethically) Hacking GitHub
Walking through a high-impact vulnerability leading to secrets exposure

2. Protecting Ourselves
Processes and tools to improve Ruby code security and prevent regressions

3. Keeping Secrets
Handling and securing sensitive values in production Ruby apps

Challenges of rotating secrets

- Separate config and secrets
- Identifying owning teams and impact of rotation
- Automating secrets rotation
- How long will things take?

Have a playbook / rotation plan (and actually test it!)

Keeping Secrets

How Nimble Are Your Secrets?

Storage Mechanisms

- .env
- Rails Credentials
- Networked secrets store (HashiCorp Vault, Azure Key Vault, etc)

- Auditability
- JIT access
- Least privilege
- Secrets versioning

Keeping Secrets

How To Keep Secrets

Goal

- Achieve a minimal footprint for sensitive data in memory

Strategies

- Overloading methods and blocking language features?
- Moving away from ENV

- Using subprocesses
- External secrets store
- Custom class for managing secrets

Keeping Secrets

Can we protect secrets within a Ruby process?

- Send()-ing Myself Belated Christmas Gifts —
GitHub.com's Environment Variables & GHES
Shell

- GitHub: How GitHub uses CodeQL to secure
GitHub

- Phrack Magazine Issue 0x45: Attacking Ruby on
Rails Applications

- RubyKaigi 2024: Remembering (ok, not really
Sarah) Marshal

- CodeQL zero to hero part 1
- RailsConf: Stop Hacker From Reading Your Data

(ActiveRecord::Encryption)

Wrap Up

Further Reading
https://gh.io/rubykaigi-2025

https://www.creastery.com/blog/sending-myself-github-com-environment-variables-and-ghes-shell/
https://www.creastery.com/blog/sending-myself-github-com-environment-variables-and-ghes-shell/
https://www.creastery.com/blog/sending-myself-github-com-environment-variables-and-ghes-shell/
https://github.blog/engineering/how-github-uses-codeql-to-secure-github/
https://github.blog/engineering/how-github-uses-codeql-to-secure-github/
https://phrack.org/issues/69/12
https://phrack.org/issues/69/12
https://rubykaigi.org/2024/presentations/segiddins.html
https://rubykaigi.org/2024/presentations/segiddins.html
https://github.blog/developer-skills/github/codeql-zero-to-hero-part-1-the-fundamentals-of-static-analysis-for-vulnerability-research/
https://www.youtube.com/watch?v=4mZNP_Dgi2w
https://www.youtube.com/watch?v=4mZNP_Dgi2w
https://gh.io/rubykaigi-2025

Call to Hacktion
GitHub Security runs a bug bounty program to
engage with security researchers, providing a
legal safe harbor for ethical hacking and
vulnerability disclosures to GitHub.

Learn more at bounty.github.com.

http://bounty.github.com

Thank you!

Dennis Pacewicz (@lyninx)
Senior Product Security Engineer
GitHub

Wei Lin Ngo (@Creastery)
Staff Security Engineer
Praetorian

https://gh.io/rubykaigi-2025

https://gh.io/rubykaigi-2025

